shlogg · Early preview
Super Kai (Kazuya Ito) @superkai_kazuya

I'm a web developer. Buy Me a Coffee: ko-fi.com/superkai SO: stackoverflow.com/users/3247006/super-kai-kazuya-ito X(Twitter): twitter.com/superkai_kazuya FB: facebook.com/superkai.kazuya

CenterCrop In PyTorch: A Guide To Size Arguments And Usage

CenterCrop() crops an image centering on it. The size argument can be a single value (int or tuple/list(int)) for [size, size] or a tuple/list with 1 or 2 elements for [height, width].

RandomInvert() In PyTorch: Inverting Images With Probability

RandomInvert() randomly inverts images. It takes 2 args: img (PIL Image or tensor) & p (probability of inversion). p must be 0 <= x <= 1. OxfordIIITPet dataset is used to test RandomInvert().

Converting Images To Grayscale With PyTorch's Torchvision

Grayscale() converts images to grayscale. OxfordIIITPet() dataset requires 1 or 3 output channels. Use Grayscale(num_output_channels=1) for 1-channel images and num_output_channels=3 for 3-channel images.

Optimize Image Cropping With CenterCrop() In Software Engineering

CenterCrop() crops images centering on them. It takes a size argument which can be an int or tuple/list of ints. The size must have at least one element and all elements must be >=1.

PyTorch RandomResizedCrop Transformation Example

Use PyTorch's `RandomResizedCrop` transformation to randomly crop images. Define functions like `show_images` and `show_images2` to apply transformations with customizable size, scale, ratio, and interpolation.

Upgrade Ubuntu, Install Python 3.12-venv & PyTorch

Update Ubuntu, check Python version (e.g. `python3 --version`), install python3.x-venv & create virtual env (`python3 -m venv venv && . venv/bin/activate`). Install PyTorch with CUDA 11.8 and JupyterLab.

Image Processing Code Breakdown: Image Transformations And Display

Python script generates images using `show_images2` but lacks clarity & documentation. Redundant calls, magic numbers & unclear purpose hinder understanding. More context needed for a helpful answer.

Understanding PyTorch's Pad Class For Image Padding

Padding images is a technique used to make them consistent in size for tasks like image classification, object detection & segmentation. It adds zeros around edges to ensure entire objects are visible.

Understanding RandomPerspective In PyTorch Transformations

RandomPerspective() can do perspective transformation for zero or more images. It has 4 arguments: distortion_scale (default:0.5), p (default:0.5), interpolation (default:BILINEAR) and fill (default:0).

Upgrade Ubuntu, Install Python 3.12-venv & PyTorch

Update Ubuntu, check Python version (e.g. `python3 --version`), install python3.x-venv & create virtual env (`python3 -m venv venv && . venv/bin/activate`). Install PyTorch with CUDA 11.8 and JupyterLab.

Improving Image Display With COCO API In Python Code

Code displays images with annotations from various datasets using matplotlib & COCO API. Issues: undefined variables, missing imports, unclear data structure. Improve by defining data loading process, consistent imports & documenting data structure.

Unlocking AI-Powered Software Engineering With CocoCaptions()

CocoCaptions() explained using MS COCO dataset with train2017, val2017, and unlabeled2017. CocoDetection() also covered for train2014, val2014, test2017, train2017, and panoptic_train2017.

Improving COCO Image Annotation Code With Type Hints And Docstrings

Consistent naming conventions, type hints, docstrings & error handling improve code readability & robustness. Updated `show_images1()` & `show_images2()` functions demonstrate these improvements.

Fixing Data Access Issues In Show_images2() And Show_images1()

pms_stf_train2017_data` & `pms_stf_val2017_data` undefined in code. Load COCO data with `pycocotools` library, assign to variables before accessing. Example: `coco = COCO('path_to_your_dataset/instances_train2017.json')

Troubleshooting COCO Dataset Access Issues In Matplotlib

Modified code to display COCO dataset images with annotations: iterates over indices directly, removes unnecessary line. Works for cap_train2017_data, cap_val2017_data, test2017_data, testdev2017_data.

Improving Code Readability With Functions And Descriptive Names

Displaying images with various types of annotations using matplotlib. The `show_images` function takes in a dataset and displays images along with their corresponding annotations, customizable to attribute, identity, bounding box or landmark data.

Understanding Torch.any() In PyTorch: A Comprehensive Guide

any() checks if any elements of a tensor are True, returning the 0D or more D tensor of zero or more elements. It can be used with torch or a tensor, and has optional arguments for dim and keepdim. An empty tensor returns False.

Understanding PyTorch's Remainder() Function For Modulo Operations

remainder() in PyTorch performs modulo operation on tensors or scalars, returning the remainder of input divided by other. It can handle zero or more elements and supports torch or tensor inputs.

Mastering Fmod() In PyTorch: A Comprehensive Guide

fmod() in PyTorch performs modulo operation on tensors or scalars, returning the remainder of division with same sign as original tensor. Example: `torch.fmod(input=tensor1, other=tensor2)` or `tensor1.fmod(other=tensor2)`.

Mastering Torch.arange() For Efficient Tensor Generation

arange() creates a 1D tensor of zero or integers or floating-point numbers between start and end-1. With torch, it has optional arguments: start, end, step, dtype, device, requires_grad, and out.

Understanding Torch Squeeze() In PyTorch

squeeze() removes 1D dimensions from tensors. Use torch.squeeze() or tensor.squeeze(). Specify dim to remove specific dimensions. Examples: `torch.squeeze(input=my_tensor)` and `my_tensor.squeeze(dim=(0, 3))`.

CIFAR100 Dataset Explained In 60 Characters

CIFAR100() loads CIFAR-100 dataset. Args: root(str/pathlib.Path), train(bool), transform(callable), target_transform(callable), download(bool). Default: train=True, transform=None, target_transform=None, download=False.