shlogg · Early preview
Super Kai (Kazuya Ito) @superkai_kazuya

Understanding Batch Normalization Layer In PyTorch

Explaining PyTorch's BatchNorm2d: A 4D tensor normalization layer with 7 initialization arguments and a required input tensor of float values.

Buy Me a Coffee☕
*Memos:

My post explains Batch Normalization Layer.
My post explains BatchNorm1d().
My post explains BatchNorm3d().
My post explains LayerNorm().
My post explains requires_grad.

BatchNorm2d() can get the 4D tensor of the zero or more elements computed by 2D Batch Normalization from the 4D tensor of zero or more elements as shown below:
*Memos:

The 1st argument for initialization is num_features(Required-Type:int). *It must be 1 <= x.
The 2nd argument for initialization is eps(Optional-Default:1e-05-Type:float).
The 3rd argument for initialization is momentum(Optional-Defau...