shlogg · Early preview
Super Kai (Kazuya Ito) @superkai_kazuya

RMSProp Optimization Algorithm Explained In PyTorch

RMSProp explained: automatically adapts learning rate to parameters, uses 8 arguments for initialization and step() updates parameters. Example usage with PyTorch's RMSprop optimizer.

Buy Me a Coffee☕
*Memos:

My post explains RMSProp.
My post explains Module().

RMSProp() can do gradient descent by automatically adapting learning rate to parameters as shown below:
*Memos:

The 1st argument for initialization is params(Required-Type:generator).
The 2nd argument for initialization is lr(Optional-Default:0.01-Type:int or float). *It must be 0 <= x.
The 3rd argument for initialization is alpha(Optional-Default:0.99-Type:int or float). *It must be 0 <= x.
The 4th argument for initialization is eps(Optional-Default:1e-08-Type:int or float). *It must be 0 <= x.
The 5th argument...